三菱电机SiC功率模块的发展里程碑

更新时间:2018-06-08 20:39    分类:电机配件   

  a)SBD与SiC MOSFET集成在同一芯片上,可大幅减小功率模块对有源芯片面积的需要。文献[9]中的案例说明了相比采用独立SBD芯片的功率模块,单一芯片方案模块的芯片安装面积的缩减因子为3~4,从而实现了高电流密度的模块设计。

  三菱电机是将SiC技术应用于功率模块的先驱之一,其SiC功率模块产品线V,目前均可提供样品。与传统Si-IGBT模块相比, SiC功率模块最主要优势是开关损耗大幅减小。对于特定逆变器应用,这种优势可以减小逆变器尺寸,提高逆变器效率及增加开关频率。目前,基于SiC功率器件逆变设备的应用领域正在不断扩大。通过对SiC技术的深入研究,三菱电机正不断夯实着未来SiC功率半导体时代的基础。

  与Si-IGBT模块相比,FMF750DC-66A具有更低的开关损耗,其Eon相对降低了61%,Eoff则相对减小了95%。SiC功率器件低开关损耗这一令人兴奋的特性可实现前面所提到的几个改善,如减小逆变器尺寸,或提高系统开关频率,或实现这两者的组合,这取决于在特定应用中的优先级。

  a)若保持开关频率相同,与Si-IGBT模块相比,采用SiC MOSFET模块逆变器的功耗大幅降低,且逆变器的效率得到提高,因此,这为通过减小散热片尺寸来缩小逆变器体积提供了新的自由度,也对于高功率密度要求的应用领域具有极大吸引力,特别是逆变器安装空间有限时的场合。

  如图1所示,三菱电机的SiC功率模块目前正处于开始于2010年前后的SiC商业化第1个阶段。然而,早在20多年前,三菱电机就开始了针对SiC技术的开发 [1]。在1994年至2004年的第1个10年中,其研发工作主要针对SiC MOSFET和SiC肖特基二极管等芯片技术本身。此后,在2005年至2009年间,三菱电机将开发重点集中到了应用SiC功率模块于逆变器中,以实现可观的系统效益。为此,三菱电机设计并评测了多种应用场合的基于SiC功率器件的逆变器。SiC功率模块的商业化阶段开始于2010年至2014年间。在此期间,三菱电机推出了多种类型的全SiC功率模块和混合SiC功率模块。同时基于三菱电机SiC功率模块的逆变器开始第1批工业化生产,并主要用于日本市场。此外,SiC MOSFET芯片技术也得到了进一步改善,1200V SiC MOSFET芯片的开发路线 三菱电机SiC功率模块产品分布(X轴:额定电流(A);Y轴:电压等级)

  本文通过在图1中的产品中选择三菱电机SiC功率模块的3种代表性产品,为合资新能源汽车铺路 日!以说明SiC技术在电力电子系统中的创新潜力:

  图2 1200V SiC MOSFET芯片开发路线年开始,SiC功率器件开始进入众多全新应用领域。目前这种扩张过程仍在继续着,甚至还加快了速度。如图1所示,目前三菱电机的SiC功率模块产品已经覆盖了较广的电流和电压范围。

  三菱电机另一个在新能源汽车领域中应用SiC功率器件的开拓性案例如图18所示。这款体积仅为275x151x121mm的超紧凑型430kVA逆变单元是针对混合动力汽车应用而开发,且具有86 kVA/dm的业内最高功率密度[8]。

  这款15A/600V全SiC超小型DIPIPM于2016年10月推出,并应用在三菱电机全新“Kirigamine”FZ和Z系列变频空调中,如图3所示。PSF15S92F6主要针对空调、洗衣机、冰箱等家用电器的应用而开发[2]。如图4所示,其内部电路由SiC MOSFET构成的三相逆变电路及驱动保护电路构成。封装外形则如图5所示。高能效比是变频空调系统的一个关键要求,在相同应用条件下,与采用相同模块封装的15A/600V Si-IGBT DIPIPM相比,这款全SiC DIPIPM的功耗降低了70%,如图6所示。采用PSF15S92F6之后,全新的“Kirigamine“系列空调器实现了优异的能效比。

  2015年4月,Bodos Power上报道了三菱电机1款800 A/1200 V的全SiC 2in1模块(FMF800DX-24A)[3]。为了有效地驱动和保护该器件,PI公司开发了其专用的栅极驱动器[4]。三菱电机最近推出了这款800A/1200 V全SiC模块的升级版本,具体型号为FMF800DX2-24A。与旧型号相比,其内部采用了相同的低损耗SiC MOSFET芯片组,但是封装有所变更,如图8所示;新封装内部电感小于10 nH,隔离电压达到Viso=4 kVAC。如图9所示,其SiC MOSFET的P侧和N侧均采用了实时控制电路(RTC)。此电路采用MOSFET芯片中集成的电流传感器来检测短路,并通过快速抑制栅极电压来高效地进行短路电流限制,具体如图10和图11所示。

  三菱电机新开发的750 A/3300 V全SiC 2in1模块,FMF750DC-66A,在参考文献[6]中有着详细介绍,其内部包含SiC MOSFET及反并联SiC肖特基二极管(SBD)。为了降低模块封装内部电感(

  b)内置于MOSFET芯片的SBD实现了MOSFET双向无退化的全单极运行,可以降低寄生二极管工作时的导通电阻所增加的芯片设计难度,因为SiC MOSFET的双极性体二极管能安全地被其内置SBD旁路。长期的可靠性试验结果表明,这种SiC MOSFET的结构完全能够避免由堆垛层错扩展引起的双极退化效应[9]。

  如图7所示,全SiC超小型DIPIPM的另一个应用优势是在MOSFET开通时二极管反向恢复更平滑,辐射噪声显著降低,从而放宽了对EMI滤波器的要求。